o
    Jjg(-                     @   s(  d Z ddlmZmZmZmZmZ ddlmZ ddl	m
Z
 ddlmZ ddlmZ ddlmZmZ ddlmZmZ dd	lmZmZ dd
lmZmZmZ ddlmZmZmZm Z m!Z! ddl"m#Z# ddeeddededee dee de$de$deee$ef ef fddZ%eddddG dd de Z&dS )z7Chain that combines documents by stuffing into context.    )AnyDictListOptionalTuple)
deprecated)	Callbacks)Document)LanguageModelLike)BaseOutputParserStrOutputParser)BasePromptTemplateformat_document)RunnableRunnablePassthrough)
ConfigDictFieldmodel_validator)DEFAULT_DOCUMENT_PROMPTDEFAULT_DOCUMENT_SEPARATORDOCUMENTS_KEYBaseCombineDocumentsChain_validate_prompt)LLMChainN)output_parserdocument_promptdocument_separatordocument_variable_namellmpromptr   r   r   r   returnc                   sf   t | |pt |pt }dtdtf fdd}tjd	i |ijdd|B | B |B jddS )
a  Create a chain for passing a list of Documents to a model.

    Args:
        llm: Language model.
        prompt: Prompt template. Must contain input variable "context" (override by
            setting document_variable), which will be used for passing in the formatted documents.
        output_parser: Output parser. Defaults to StrOutputParser.
        document_prompt: Prompt used for formatting each document into a string. Input
            variables can be "page_content" or any metadata keys that are in all
            documents. "page_content" will automatically retrieve the
            `Document.page_content`, and all other inputs variables will be
            automatically retrieved from the `Document.metadata` dictionary. Default to
            a prompt that only contains `Document.page_content`.
        document_separator: String separator to use between formatted document strings.
        document_variable_name: Variable name to use for the formatted documents in the prompt.
            Defaults to "context".

    Returns:
        An LCEL Runnable. The input is a dictionary that must have a "context" key that
        maps to a List[Document], and any other input variables expected in the prompt.
        The Runnable return type depends on output_parser used.

    Example:
        .. code-block:: python

            # pip install -U langchain langchain-community

            from langchain_community.chat_models import ChatOpenAI
            from langchain_core.documents import Document
            from langchain_core.prompts import ChatPromptTemplate
            from langchain.chains.combine_documents import create_stuff_documents_chain

            prompt = ChatPromptTemplate.from_messages(
                [("system", "What are everyone's favorite colors:\n\n{context}")]
            )
            llm = ChatOpenAI(model="gpt-3.5-turbo")
            chain = create_stuff_documents_chain(llm, prompt)

            docs = [
                Document(page_content="Jesse loves red but not yellow"),
                Document(page_content = "Jamal loves green but not as much as he loves orange")
            ]

            chain.invoke({"context": docs})
    inputsr    c                    s     fdd|  D S )Nc                 3   s    | ]}t | V  qd S N)r   .0doc)_document_prompt `/var/www/html/zoom/venv/lib/python3.10/site-packages/langchain/chains/combine_documents/stuff.py	<genexpr>T   s
    
zDcreate_stuff_documents_chain.<locals>.format_docs.<locals>.<genexpr>)join)r!   r&   r   r   r'   r(   format_docsS   s   z1create_stuff_documents_chain.<locals>.format_docsformat_inputs)run_namestuff_documents_chainNr'   )r   r   r   dictstrr   assignwith_config)r   r   r   r   r   r   _output_parserr,   r'   r+   r(   create_stuff_documents_chain   s   
7
r5   z0.2.13z1.0zThis class is deprecated. Use the `create_stuff_documents_chain` constructor instead. See migration guide here: https://python.langchain.com/v0.2/docs/versions/migrating_chains/stuff_docs_chain/)sinceremovalmessagec                       s4  e Zd ZU dZeed< 	 edd dZeed< 	 e	ed< 	 dZ
e	ed	< 	 ed
ddZeddededefddZedee	 f fddZdee dedefddZdee dedee fddZ	d#dee dededee	ef fddZ	d#dee dededee	ef fdd Zede	fd!d"Z  Z S )$StuffDocumentsChaina-  Chain that combines documents by stuffing into context.

    This chain takes a list of documents and first combines them into a single string.
    It does this by formatting each document into a string with the `document_prompt`
    and then joining them together with `document_separator`. It then adds that new
    string to the inputs with the variable name set by `document_variable_name`.
    Those inputs are then passed to the `llm_chain`.

    Example:
        .. code-block:: python

            from langchain.chains import StuffDocumentsChain, LLMChain
            from langchain_core.prompts import PromptTemplate
            from langchain_community.llms import OpenAI

            # This controls how each document will be formatted. Specifically,
            # it will be passed to `format_document` - see that function for more
            # details.
            document_prompt = PromptTemplate(
                input_variables=["page_content"],
                template="{page_content}"
            )
            document_variable_name = "context"
            llm = OpenAI()
            # The prompt here should take as an input variable the
            # `document_variable_name`
            prompt = PromptTemplate.from_template(
                "Summarize this content: {context}"
            )
            llm_chain = LLMChain(llm=llm, prompt=prompt)
            chain = StuffDocumentsChain(
                llm_chain=llm_chain,
                document_prompt=document_prompt,
                document_variable_name=document_variable_name
            )
    	llm_chainc                   C   s   t S r"   )r   r'   r'   r'   r(   <lambda>   s    zStuffDocumentsChain.<lambda>)default_factoryr   r   z

r   Tforbid)arbitrary_types_allowedextrabefore)modevaluesr    c                 C   s`   |d j j}d|vrt|dkr|d |d< |S td|d |vr.td|d  d| |S )zGet default document variable name, if not provided.

        If only one variable is present in the llm_chain.prompt,
        we can infer that the formatted documents should be passed in
        with this variable name.
        r:   r      r   zQdocument_variable_name must be provided if there are multiple llm_chain_variableszdocument_variable_name z- was not found in llm_chain input_variables: )r   input_variableslen
ValueError)clsrB   llm_chain_variablesr'   r'   r(   "get_default_document_variable_name   s   	z6StuffDocumentsChain.get_default_document_variable_namec                    s"    fdd j jD }t j| S )Nc                    s   g | ]	}| j kr|qS r'   )r   )r$   kselfr'   r(   
<listcomp>   s    z2StuffDocumentsChain.input_keys.<locals>.<listcomp>)r:   
input_keyssuper)rL   
extra_keys	__class__rK   r(   rN      s   
zStuffDocumentsChain.input_keysdocskwargsc                    s>    fdd|D } fdd|  D } j|| j< |S )a  Construct inputs from kwargs and docs.

        Format and then join all the documents together into one input with name
        `self.document_variable_name`. Also pluck any additional variables
        from **kwargs.

        Args:
            docs: List of documents to format and then join into single input
            **kwargs: additional inputs to chain, will pluck any other required
                arguments from here.

        Returns:
            dictionary of inputs to LLMChain
        c                    s   g | ]}t | jqS r'   )r   r   r#   rK   r'   r(   rM      s    z3StuffDocumentsChain._get_inputs.<locals>.<listcomp>c                    s$   i | ]\}}| j jjv r||qS r'   )r:   r   rD   )r$   rJ   vrK   r'   r(   
<dictcomp>   s
    z3StuffDocumentsChain._get_inputs.<locals>.<dictcomp>)itemsr   r*   r   )rL   rS   rT   doc_stringsr!   r'   rK   r(   _get_inputs   s   
zStuffDocumentsChain._get_inputsc                 K   s2   | j |fi |}| jjjdi |}| j|S )aV  Return the prompt length given the documents passed in.

        This can be used by a caller to determine whether passing in a list
        of documents would exceed a certain prompt length. This useful when
        trying to ensure that the size of a prompt remains below a certain
        context limit.

        Args:
            docs: List[Document], a list of documents to use to calculate the
                total prompt length.

        Returns:
            Returns None if the method does not depend on the prompt length,
            otherwise the length of the prompt in tokens.
        Nr'   )rY   r:   r   format_get_num_tokens)rL   rS   rT   r!   r   r'   r'   r(   prompt_length   s   z!StuffDocumentsChain.prompt_lengthN	callbacksc                 K   s,   | j |fi |}| jjdd|i|i fS )a  Stuff all documents into one prompt and pass to LLM.

        Args:
            docs: List of documents to join together into one variable
            callbacks: Optional callbacks to pass along
            **kwargs: additional parameters to use to get inputs to LLMChain.

        Returns:
            The first element returned is the single string output. The second
            element returned is a dictionary of other keys to return.
        r]   Nr'   )rY   r:   predictrL   rS   r]   rT   r!   r'   r'   r(   combine_docs   s   z StuffDocumentsChain.combine_docsc                    s4   | j |fi |}| jjdd|i|I dH i fS )a  Async stuff all documents into one prompt and pass to LLM.

        Args:
            docs: List of documents to join together into one variable
            callbacks: Optional callbacks to pass along
            **kwargs: additional parameters to use to get inputs to LLMChain.

        Returns:
            The first element returned is the single string output. The second
            element returned is a dictionary of other keys to return.
        r]   Nr'   )rY   r:   apredictr_   r'   r'   r(   acombine_docs  s    z!StuffDocumentsChain.acombine_docsc                 C   s   dS )Nr/   r'   rK   r'   r'   r(   _chain_type  s   zStuffDocumentsChain._chain_typer"   )!__name__
__module____qualname____doc__r   __annotations__r   r   r   r1   r   r   model_configr   classmethodr   r   rI   propertyr   rN   r	   r0   rY   r   intr\   r   r   r`   rb   rc   __classcell__r'   r'   rQ   r(   r9   c   sZ   
 
%



r9   )'rg   typingr   r   r   r   r   langchain_core._apir   langchain_core.callbacksr   langchain_core.documentsr	   langchain_core.language_modelsr
   langchain_core.output_parsersr   r   langchain_core.promptsr   r   langchain_core.runnablesr   r   pydanticr   r   r   'langchain.chains.combine_documents.baser   r   r   r   r   langchain.chains.llmr   r1   r5   r9   r'   r'   r'   r(   <module>   sJ    
K	