o
    jg  ã                   @   s@   d Z ddlmZmZ ddlmZ ddlmZ dd„ Zdd„ Z	d	S )
z
Recurrences
é    )ÚSÚsympify)Úiterable)Úas_intc                 C   sÒ   | st jS t| ƒstdƒ‚t|ƒstdƒ‚t|ƒ}|dk r!tdƒ‚dd„ | D ƒ}dd„ |D ƒ}t|ƒ}t|ƒ|kr=tdƒ‚|t jg|t|ƒ  7 }||k rQ|| S d	d„ tt||ƒ|ƒD ƒ}t	|d
d… |d ƒS )aŽ	  
    Evaluation of univariate linear recurrences of homogeneous type
    having coefficients independent of the recurrence variable.

    Parameters
    ==========

    coeffs : iterable
        Coefficients of the recurrence
    init : iterable
        Initial values of the recurrence
    n : Integer
        Point of evaluation for the recurrence

    Notes
    =====

    Let `y(n)` be the recurrence of given type, ``c`` be the sequence
    of coefficients, ``b`` be the sequence of initial/base values of the
    recurrence and ``k`` (equal to ``len(c)``) be the order of recurrence.
    Then,

    .. math :: y(n) = \begin{cases} b_n & 0 \le n < k \\
        c_0 y(n-1) + c_1 y(n-2) + \cdots + c_{k-1} y(n-k) & n \ge k
        \end{cases}

    Let `x_0, x_1, \ldots, x_n` be a sequence and consider the transformation
    that maps each polynomial `f(x)` to `T(f(x))` where each power `x^i` is
    replaced by the corresponding value `x_i`. The sequence is then a solution
    of the recurrence if and only if `T(x^i p(x)) = 0` for each `i \ge 0` where
    `p(x) = x^k - c_0 x^(k-1) - \cdots - c_{k-1}` is the characteristic
    polynomial.

    Then `T(f(x)p(x)) = 0` for each polynomial `f(x)` (as it is a linear
    combination of powers `x^i`). Now, if `x^n` is congruent to
    `g(x) = a_0 x^0 + a_1 x^1 + \cdots + a_{k-1} x^{k-1}` modulo `p(x)`, then
    `T(x^n) = x_n` is equal to
    `T(g(x)) = a_0 x_0 + a_1 x_1 + \cdots + a_{k-1} x_{k-1}`.

    Computation of `x^n`,
    given `x^k = c_0 x^{k-1} + c_1 x^{k-2} + \cdots + c_{k-1}`
    is performed using exponentiation by squaring (refer to [1_]) with
    an additional reduction step performed to retain only first `k` powers
    of `x` in the representation of `x^n`.

    Examples
    ========

    >>> from sympy.discrete.recurrences import linrec
    >>> from sympy.abc import x, y, z

    >>> linrec(coeffs=[1, 1], init=[0, 1], n=10)
    55

    >>> linrec(coeffs=[1, 1], init=[x, y], n=10)
    34*x + 55*y

    >>> linrec(coeffs=[x, y], init=[0, 1], n=5)
    x**2*y + x*(x**3 + 2*x*y) + y**2

    >>> linrec(coeffs=[1, 2, 3, 0, 0, 4], init=[x, y, z], n=16)
    13576*x + 5676*y + 2356*z

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Exponentiation_by_squaring
    .. [2] https://en.wikipedia.org/w/index.php?title=Modular_exponentiation&section=6#Matrices

    See Also
    ========

    sympy.polys.agca.extensions.ExtensionElement.__pow__

    z6Expected a sequence of coefficients for the recurrencezFExpected a sequence of values for the initialization of the recurrencer   z@Point of evaluation of recurrence must be a non-negative integerc                 S   ó   g | ]}t |ƒ‘qS © ©r   ©Ú.0Úargr   r   úR/var/www/html/zoom/venv/lib/python3.10/site-packages/sympy/discrete/recurrences.pyÚ
<listcomp>g   ó    zlinrec.<locals>.<listcomp>c                 S   r   r   r   r	   r   r   r   r   h   r   zECount of initial values should not exceed the order of the recurrencec                 S   s   g | ]\}}|| ‘qS r   r   )r
   ÚuÚvr   r   r   r   s   s    Néÿÿÿÿ)
r   ÚZeror   Ú	TypeErrorr   Ú
ValueErrorÚlenÚzipÚlinrec_coeffsÚsum)ÚcoeffsÚinitÚnÚcÚbÚkÚtermsr   r   r   Úlinrec
   s&   Mr    c                    s.   t ˆƒ‰‡‡fdd„‰‡ ‡‡fdd„‰ ˆ |ƒS )a–  
    Compute the coefficients of n'th term in linear recursion
    sequence defined by c.

    `x^k = c_0 x^{k-1} + c_1 x^{k-2} + \cdots + c_{k-1}`.

    It computes the coefficients by using binary exponentiation.
    This function is used by `linrec` and `_eval_pow_by_cayley`.

    Parameters
    ==========

    c = coefficients of the divisor polynomial
    n = exponent of x, so dividend is x^n

    c                    s¸   t jgdt| ƒ d |  }t| ƒD ]\}}t| ƒD ]\}}||| |   || 7  < qqtt|ƒd ˆd dƒD ]}tˆƒD ]}||| d   || ˆ |  7  < q@q:|d ˆ… S )Né   é   r   )r   r   r   Ú	enumerateÚrange)r   ÚoffsetÚwÚiÚpÚjÚq)r   r   r   r   Ú_square_and_reduce‹   s   ÿ&ÿz)linrec_coeffs.<locals>._square_and_reducec                    sF   | ˆk rt jg|  t jg t jgˆ|  d   S ˆˆ | d ƒ| d ƒS )Nr"   r!   )r   r   ÚOne)r   )Ú_final_coeffsr+   r   r   r   r-   œ   s   (z$linrec_coeffs.<locals>._final_coeffs)r   )r   r   r   )r-   r+   r   r   r   r   w   s   
r   N)
Ú__doc__Ú
sympy.corer   r   Úsympy.utilities.iterablesr   Úsympy.utilities.miscr   r    r   r   r   r   r   Ú<module>   s    m