o
    jg-                  	   @   sZ  d dl mZmZ d dlmZ d dlmZ d dlmZ d dl	m
Z
 d dlmZmZ d dlmZ d dlmZmZ d d	lmZ d d
lmZmZmZmZmZ d dlmZ d dlmZmZ d dl m!Z!m"Z" d dl#m$Z$m%Z% d dl&m'Z'm(Z( d dl)m*Z*m+Z+ d dl,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2 d dl3m4Z4 d dl5m6Z6 d dlm7Z7m8Z8m9Z9m:Z:m;Z;m<Z< d dl=m>Z>m?Z? d dl@mAZAmBZBmCZCmDZDmEZEmFZFmGZGmHZHmIZI edZJeJdu ZKedZLedZMdd ZNdd ZOdd  ZPd!d" ZQd#d$ ZRd%d& ZSd'd( ZTd)d* ZUd+d, ZVd-d. ZWd/d0 ZXg d1d2d3d4eOd5d6fd7eAfd8d9eA fd:eAd9 fd;ePeAePd9d<fd=eAeNd>d? fd@eF fdAeDeE fdBeDeE fdCeDeE fdDeDeE fdEeNeDeE eD fdFe7eDd9 eEd9  eFd9 fdGeOeNeAeBeCfdHeNeOedIeEeOeDedJfdKedLfdMedLfdNeOeNeAeBeCfdOeOeNeAeBeCfdPeOeNeAeBeCfdQeOeNeAeBeCfdReOeNeAeBeCfdSeNd?d?fdTeNd d?fdUeOd?d9fdVeOd d?fdWeOd?d9fdXe7eAeBfdYe8eAeBfdZe9eAeBfd[e;eAeBfd\e:eAeBfd]e<eAeBfd^e:eAeBfd_e<eAeBfd`e(eAfdae'eAfdbe>d7fdce?d7fdde1eLfdee1eLfdfe-eDfdgeOe1eDe.eEfdhe1e.eLfdie1e.eLfdjeDeE fdkeDeE fdleDeE fdmePd9d<fdneOePd9d<eBfdoeOePd9d<dpfdqeOd9ePd>d<fdreOe1eAePd9d<fdseOeDeE ePeFd<fdteOduePd>d<fdve/eAe0eB fdwe6eDeAd>dxdyfdze6eDeAd>dxdyfd{e6eDeAd>dxdyfd|e6eDeAd>dxdyfd}e6eDeAd>dxdyfd~e6eDeAd>ddyfde6eDeAd>ddyfde6eDeAd>ddyfde6eDeAd>ddyfdefde6ePeAd<eAefdeeAeAfdeeAeGfdeMeAfdeMeAeBfdeMeAeBeCfdedeAfdedeAeB fdeeMeAeAfdeedeAeAfdYeeAeBfdeSeAfdeSe!eAfdeSeAeSeB fdeSeSeAeSeB fdedeSeAeB  fde4eAeAfde4eAeLfde4eAd9 eB eAfde4eNeAeDeAfde4d?eDfde4d?eAd duffde4eAeAd d?ffde4eAeAeDeEffde4eAeAeDeEffde4eAeAeDeEffde4eAeAeDeEffde4eAeAeDeEffde4eAeAeDeEffde4eMeCeCeMeDeMeEffde4eNeAeDeAfde4eNeNeDeEeFeAfde4eeCd<eCfde4d>eeCd< eCfde4eeAd<eAfde4eNePeDd<eeEd<eAfde4d>ePeLd< eLfde4eNePeAd<d?eAfdedfdedfdedfdedfdedfdedfdedededfdeTeAfdeTdfdeTeLfdeTeNeAd?fdeTeTeAfdeTeTeTeAfdeOeTdeTdufde+eAfde+eNeAeEfde*e1eAd>fde*e1eAeBfde*e1eAeLfdeQeOdePdd<fdeReCfdeReReCfdeReNeAeBfdeReAeReB fdZeeAeBfd\eeAeBfd[eeAeBfd]eeAeBfded7fded΃fdedЃfded҃fdeeFeHd?d>ffdeeFeHd?d>ffdeeFeHd?d>ffdeeFeHd?d>ffdeeHd9 eHd?dffdeePeTeId<eId effdeeAeDeEeFffdeeAeDeEeFffdeeAeDeEeFffdeeAeDeEeFffdeUeAfdeUeAfdeVeAd؃fdeVeAefdeVeAeB efdeVeAefdeVeAeB efdeVeAd9fdeVeAeDfdeVeAdfdeVeAePeDd9fdeAfdeNeDeEfdee2eAeAfdeWeIeHfdeWeIeHfdeWeIeHfdeWeId fdePeAeWeIeHfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfde4eAeAfdeVeAd9fd eVeAeDfdeNePdd eOd<ePdd fdeNeOd>eAd<fZYdd ZZg dZ[dd Z\g d	Z]ed
d Z^dd Z_dS (      )raisesXFAIL)import_module)Product)SumAdd)
DerivativeFunctionMul)EooPow)GreaterThanLessThanStrictGreaterThanStrictLessThan
Unequality)Symbol)binomial	factorial)Abs	conjugate)explog)ceilingfloor)rootsqrt)asincoscscsecsintan)Integral)Limit)EqNeLtLeGtGe)BraKet)	xyzabctknantlr4Nthetafc                 C      t | |ddS NF)evaluater   r4   r5    rA   V/var/www/html/zoom/venv/lib/python3.10/site-packages/sympy/parsing/tests/test_latex.py_Add#      rC   c                 C   r=   r>   r   r@   rA   rA   rB   _Mul'   rD   rE   c                 C   r=   r>   r   r@   rA   rA   rB   _Pow+   rD   rF   c                 C      t | ddS r>   )r    r4   rA   rA   rB   _Sqrt/      rI   c                 C   rG   r>   )r   rH   rA   rA   rB   
_Conjugate3   rJ   rK   c                 C   rG   r>   )r   rH   rA   rA   rB   _Abs7   rJ   rL   c                 C   rG   r>   )r   rH   rA   rA   rB   
_factorial;   rJ   rM   c                 C   rG   r>   )r   rH   rA   rA   rB   _exp?   rJ   rN   c                 C   r=   r>   )r   r@   rA   rA   rB   _logC   rD   rO   c                 C   r=   r>   )r   )r9   r8   rA   rA   rB   	_binomialG   rD   rP   c                  C   s   ddl m} m}m} ~ ~~d S )Nr   build_parsercheck_antlr_versiondir_latex_antlr)&sympy.parsing.latex._build_latex_antlrrR   rS   rT   rQ   rA   rA   rB   test_importK   s   
rV   )0r   )1   )z-3.14gQ	z(-7.13)(1.5)gQg      ?r1   2x   zx^2zx^\frac{1}{2}z	x^{3 + 1}   rY   z-cz	a \cdot bza / bza \div bza + bz	a + b - aza^2 + b^2 = c^2z	(x + y) zza'b+ab'za'zb'zy''_1zy_{1}''zy_1''z\left(x + y\right) zz\left( x + y\right ) zz\left(  x + y\right ) zz\left[x + y\right] zz\left\{x + y\right\} zz1+1z0+1z1*2z0*1z1 \times 2 zx = yzx \neq yzx < yzx > yzx \leq yzx \geq yzx \le yzx \ge yz\lfloor x \rfloorz\lceil x \rceilz\langle x |z| x \ranglez\sin \thetaz\sin(\theta)z\sin^{-1} az\sin a \cos bz\sin \cos \thetaz\sin(\cos \theta)z\frac{a}{b}z\dfrac{a}{b}z\tfrac{a}{b}z\frac12z\frac12yz	\frac1234"   z	\frac2{3}z\frac{\sin{x}}2z\frac{a + b}{c}z\frac{7}{3}   z(\csc x)(\sec y)z\lim_{x \to 3} az+-)dirz\lim_{x \rightarrow 3} az\lim_{x \Rightarrow 3} az\lim_{x \longrightarrow 3} az\lim_{x \Longrightarrow 3} az\lim_{x \to 3^{+}} a+z\lim_{x \to 3^{-}} a-z\lim_{x \to 3^+} az\lim_{x \to 3^-} az\inftyz\lim_{x \to \infty} \frac{1}{x}z\frac{d}{dx} xz\frac{d}{dt} xzf(x)zf(x, y)z
f(x, y, z)zf'_1(x)zf_{1}'zf_{1}''(x+y)zf_{1}''z\frac{d f(x)}{dx}z\frac{d\theta(x)}{dx}z|x|z||x||z|x||y|z||x||y||z
\pi^{|xy|}piz	\int x dxz\int x d\thetaz\int (x^2 - y)dxz\int x + a dxz\int daz\int_0^7 dxz\int\limits_{0}^{1} x dxz\int_a^b x dxz\int^b_a x dxz\int_{a}^b x dxz\int^{b}_a x dxz\int_{a}^{b} x dxz\int^{b}_{a} x dxz\int_{f(a)}^{f(b)} f(z) dzz
\int (x+a)z\int a + b + c dxz\int \frac{dz}{z}z\int \frac{3 dz}{z}z\int \frac{1}{x} dxz!\int \frac{1}{a} + \frac{1}{b} dxz#\int \frac{3 \cdot d\theta}{\theta}z\int \frac{1}{x} + 1 dxx_0zx_{0}zx_{1}x_azx_{a}zx_{b}zh_\thetaz	h_{theta}z
h_{\theta}zh_{\theta}(x_0, x_1)zx!z100!d   z\theta!z(x + 1)!z(x!)!zx!!!z5!7!   z\sqrt{x}z\sqrt{x + b}z\sqrt[3]{\sin x}z\sqrt[y]{\sin x}z\sqrt[\theta]{\sin x}z\sqrt{\frac{12}{6}}      z\overline{z}z\overline{\overline{z}}z\overline{x + y}z\overline{x} + \overline{y}z
\mathit{x}z\mathit{test}testz\mathit{TEST}TESTz\mathit{HELLO world}zHELLO worldz\sum_{k = 1}^{3} cz\sum_{k = 1}^3 cz\sum^{3}_{k = 1} cz\sum^3_{k = 1} cz\sum_{k = 1}^{10} k^2
   z"\sum_{n = 0}^{\infty} \frac{1}{n!}z\prod_{a = b}^{c} xz\prod_{a = b}^c xz\prod^{c}_{a = b} xz\prod^c_{a = b} xz\exp xz\exp(x)z\lg xz\ln xz\ln xyz\log xz\log xyz
\log_{2} xz
\log_{a} xz\log_{11} x   z\log_{a^2} xz[x]z[a + b]z\frac{d}{dx} [ \tan x ]z\binom{n}{k}z\tbinom{n}{k}z\dbinom{n}{k}z\binom{n}{0}zx^\binom{n}{k}za \, bza \thinspace bza \: bza \medspace bza \; bza \thickspace bz	a \quad bz
a \qquad bza \! bza \negthinspace bza \negmedspace bza \negthickspace bz\int x \, dxz\log_2 xz\log_a xz	5^0 - 4^0   z3x - 1c                  C   s2   ddl m}  tD ]\}}| ||ksJ |qd S )Nr   )parse_latex)sympy.parsing.latexro   
GOOD_PAIRS)ro   	latex_str
sympy_exprrA   rA   rB   test_parseable  s   rt   )&()z\frac{d}{dx}z(\frac{d}{dx})z\sqrt{}z\sqrtz\overline{}z	\overline{}z\mathit{x + y}z\mathit{21}z
\frac{2}{}z
\frac{}{2}z\int!z!0_^|z||x|z()z"((((((((((((((((()))))))))))))))))rb   z\frac{d}{dx} + \frac{d}{dt}zf(x,,y)zf(x,y,z\sin^xz\cos^2@#$%&*\~z\frac{(2 + x}{1 - x)}c               	   C   N   ddl m} m} tD ]}t| | | W d    n1 sw   Y  q
d S Nr   ro   LaTeXParsingError)rp   ro   r   BAD_STRINGSr   ro   r   rr   rA   rA   rB   test_not_parseableF  s   

r   )
z\cos 1 \coszf(,zf()za \div \div bza \cdot \cdot bza // bza +z1.1.1z1 +za / b /c               	   C   r   r   rp   ro   r   FAILING_BAD_STRINGSr   r   rA   rA   rB   test_failing_not_parseableZ  s   

r   c               	   C   sR   ddl m} m} tD ]}t| | |dd W d    n1 s!w   Y  q
d S )Nr   r   T)strictr   r   rA   rA   rB   test_strict_modeb  s   
r   )`sympy.testing.pytestr   r   sympy.externalr   sympy.concrete.productsr   sympy.concrete.summationsr   sympy.core.addr   sympy.core.functionr	   r
   sympy.core.mulr   sympy.core.numbersr   r   sympy.core.powerr   sympy.core.relationalr   r   r   r   r   sympy.core.symbolr   (sympy.functions.combinatorial.factorialsr   r   $sympy.functions.elementary.complexesr   r   &sympy.functions.elementary.exponentialr   r   #sympy.functions.elementary.integersr   r   (sympy.functions.elementary.miscellaneousr   r    (sympy.functions.elementary.trigonometricr!   r"   r#   r$   r%   r&   sympy.integrals.integralsr'   sympy.series.limitsr(   r)   r*   r+   r,   r-   r.   sympy.physics.quantum.stater/   r0   	sympy.abcr1   r2   r3   r4   r5   r6   r7   r8   r9   r:   disabledr;   r<   rC   rE   rF   rI   rK   rL   rM   rN   rO   rP   rV   rq   rt   r   r   r   r   r   rA   rA   rA   rB   <module>   sD     ,

	




 

 !"#$%&
'
(
)
*
+
,
-./0
1
2
3456789:;<=>?@ABCDEFGH
IJKLMNOP
QRSTUVWXYZ[\]^_`abcdefghikm
n
o
p
q
r
st
v
w
xyz{|
}~       
          	  
    
  
  
  
                      
  
           !  "  #  $  %  &  '  (  )  *  +  ,  -  .  /  0  1  2  3  4  5  6  7  8  9  :  ;  <  "=  >  B
)
