o
    jgS                  "   @   s8  d dl mZ d dlmZ d dlmZ d dlmZ d dlm	Z	 d dl
mZmZ d dlmZmZmZ d dlmZ d d	lmZ d d
lmZmZmZmZmZ d dlmZ d dlmZmZ d dl m!Z!m"Z" d dl#m$Z$m%Z% d dl&m'Z'm(Z( d dl)m*Z*m+Z+m,Z,m-Z- d dl.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4 d dl5m6Z6 d dl7m8Z8 d dlm9Z9m:Z:m;Z;m<Z<m=Z=m>Z> d dl?m@Z@mAZAmBZB d dlCmDZDmEZEmFZFmGZGmHZHmIZImJZJmKZKmLZLmMZM ddlNmOZOmPZPmQZQmRZRmSZSmTZTmUZUmVZVmWZWmXZXmYZY edZZeZdu Z[dd Z\dd Z]efdd Z^d!ed"fd#ed#fd$ed%fd&ed&fd'ed(fd)ed(fd*ed+fd,ed+fd-ed.fd/ed0fd1ed2fd3ed4fgZ_d5d6d7d8eRd9d:fd;eQddfd<eQd dfd=eRdd>fd?eRd dfd.eDfd@d>eD fdAeQeRdBeDdCfdDeI fdEefdFeGeH fdGeRdd>fdHeGeH fdIeGeH fdJeGeH fdKeQeGeH eG fdLeReQeDeEeFfdMeQeRedNeHeReGedOfgZ`dPdQdRdSdTd@d>eD fdAdBeD d fdDeI fdFeGeH fdUdHeGeH fdIeGeH fdJeGeH fdKeHfdLeDeE eF fgZadVeGeH fdWeGeH fdXeGeH fdYeRdeSd>dCfdZeReRdeSd>dCeEfd[eReRdeSd>dCd\fd]eRd>eSdBdCfd^eReGeH eSeIdCfd_eRd`eSdBdCfg	ZbdVeGeH fdWeGeH fdXeGeH fdYedd>fdZeEd> fdad]ed>dBfd^eGeH eI fd_ed`dBfg	Zcdbe9eDeEfdce:eDeEfdde;eDeEfdee=eDeEfdfe<eDeEfdge>eDeEfdhe<eDeEfdie>eDeEfddeeDeEfdfeeDeEfdeeeDeEfdgeeDeEfdceeDeEfdje9eGd> eHd>  eId> fgZddkeDd> fdleSeDeRdeSd>dCfdmeDeQdBd fdnedoeVeDeE  fdpeQeSdqd eRdCeSdrd fgZedkeDd> fdle+eDfdmeDdr fdnedoeVeDeE  fdsgZfdte6eRdeDeDfdue6eRdeDeDfdve6eRdeDeOfdwe6eRdeDd> eE eDfdxe6eRdeQeDeGeDfdye6eRddeGfdze6eRddeDd d`ffd{e6eRdeDeDd dffd|e6eRdeDeDeGeHffd}e6eRdeDeDeGeHffd~e6eRdeDeDeGeHffde6eRdeDeDeGeHffde6eRdeDeDeGeHffde6eRdeDeDeGeHffde6ePeFeFePeGePeHffde6eRdeQeQeGeHeIeDfde6eRdeRdeeFdCeFfde6eRdeRdBeSeFdCeFfde6eRdeRdeeDdCeDfde6eRdeQeRdeSeGdCeRdeeHdCeDfde6eRdeQeRdeSeDdCdeDfgZgdte6eDeDfdue6eDeDfdve6eDeOfdwe6eDd> eE eDfdxe6eDeG eDfdye6deGfdze6deDd d`ffd{e6eDeDd dffd|e6eDeDeGeHffd}e6eDeDeGeHffd~e6eDeDeGeHffde6eDeDeGeHffde6eDeDeGeHffde6eDeDeGeHffde6ePeFeFePeGePeHffde6eGeH eI eDfde6eeFdCeFfde6dBeeFdC eFfde6deD eDfde6deG deH  eDfde6deD d eDfgZhdeeDeDfdeeDeKfdee4eDeDfdeePeDeDfdeedeDeDfgZide3eOfde3eOfde/eGfdeRe3eGe0eHfde3e0eOfde3e0eOfde1eDe2eE fdeRe3eDeSd>dCfgZjde8eGeDdBddfde8eGeDdBddfde8eGeDdBddfde8eGeDdBddfde8eGeDdBddfde8eGeDdBddfde8eGeDdBddfde8eGeDdBddfde8eGeDdBddfde8eRdeSeDdCeDefg
Zkde8deD eDefgZlde+eDfde+eQeDeHfdeSe3eDeSdBdCfde*e3eDeEfde*e3eDeOfdeTeRdeSddCfgZmde+eDfde+eDeH fde*e3eDdBfde*e3eDeEfde*e3eDeOfde+d>fgZndeWeDfdeWdfdeWeOfdeWeQeDdfdeWeWeDfdeWeWeWeDfdeReWdqeWd`fgZodeeDfdedfdeeOfdeeDd fdeeeDfdeeeeDfdedqed` fgZpde	eRdeIeLddBffde	eRdeIeLddBffde	eRdeIeLddBffde	eRdeIeLddBffde	eRdeLd> eLddffde	eRdeRdeSeWeMdCeMd effgZqde	eIeLddBffde	eIeLddBffde	eIeLddBffde	eIeLddBffde	eLd> eLddffde	deeM eMd effgZrdeeDeGeHeIffdeeDeGeHeIffdeeDeGeHeIffdeeDeGeHeIffgZsdePeDfdePeDeEfdePeDeEeFfdedăeDfdedƃeDeE fded(ed"ed#fgZtdeVeDfdeVe!eDfdeVeDeVeE fdeVeVeDeVeE fde(eDfde'eDfdeXeDfdeXeDfde^eDdfde^eDfde^eDeE fde^eDfde^eDeE fde^eDd>fde^eDeGfde^eDd؃fde^eDeSeGd>fde^eDd>fde^eDeGfdeUeFfdeUeUeFfdeUeQeDeEfdeUeDeUeE fde\eGeHfde\eGeHeIeJ eDeE fde]eGeHfde]eGeHeIeJ eDeE fde@d.fdeAd.fdeBe@d.eAdfgZude!eDfde!e!eDfde!eDe!eE fde!e!eDe!eE fde(eDfde'eDfde$eDfde$eDfde%eDdfde%eDfde%eDeE fde%eDfde%eDeE fde%eDd>fde%eDeGfde%eDd؃fde%eDeSeGd>fde%eDd>fde%eDeGfde"eFfde"e"eFfde"eDeE fde"eDe"eE fde,eGeHfde,eGeHeIeJ eDeE fde-eGeHfde-eGeHeIeJ eDeE fde@d.fdeAd.fdeBe@d.eAdfgZvdeReGeHfdeReGeHfdeReGeHfdeReGeHfdeReGeHfdeReGeHfdeReGeHfdeReGeHfdeReGeHfdeReGeHfdeReGeHfdeReGeHfgZwdeYeMeLfdeYeMeLfdeYeMeLfdeYeMd fdeSeDeYeMeLfgZxdeeMeLfdeeMeLfdeeMeLfdeeMd fdeDeeMeL fgZydeReQeDeEeFfdeReQeDeEeFfdeReQeDeEeFfgZzdd Z{dd Z|d d Z}dd Z~dd Zdd Zdd	 Zd
d Zdd Zdd Zdd Zdd Zdd Zedd Zdd Zedd Zdd Zdd ZdS (       )XFAIL)parse_latex_lark)import_module)Product)Sum)
DerivativeFunction)EooRational)Powevaluate)GreaterThanLessThanStrictGreaterThanStrictLessThan
Unequality)Symbol)binomial	factorial)Abs	conjugate)explog)ceilingfloor)rootsqrtMinMax)asincoscscsecsintan)Integral)Limit)EqNeLtLeGtGe)BraKetInnerProduct)
xyzabcdtkn   )thetaf_Add_Mul_Pow_Sqrt
_Conjugate_Abs
_factorial_exp	_binomiallarkNc                  G      t | ddiS Nr   F)r   args rM   [/var/www/html/zoom/venv/lib/python3.10/site-packages/sympy/parsing/tests/test_latex_lark.py_Min"      rO   c                  G   rI   rJ   )r    rK   rM   rM   rN   _Max&   rP   rQ   c                 C   s"   |t kr
t| ddS t| |ddS )NFr   )r	   r   )r5   r6   rM   rM   rN   _log*   s   rR   x_0zx_{0}zx_{1}x_azx_{a}zx_{b}zh_\thetaz	h_{theta}z
h_{\theta}zy''_1zy_{1}''zy_1''z
\mathit{x}r2   z\mathit{test}testz\mathit{TEST}TESTz\mathit{HELLO world}zHELLO world)0r   )1r<   )z-3.14gQ	(-7.13)(1.5)gQg      ?1+10+11*2   0*12xz3x - 1   z-cz\inftyz	a \cdot b1 \times 2 za / bza \div bza + bz	a + b - az	(x + y) zza'b+ab'za'zb')rY   gp=
c%)rZ   r]   )r[   r<   )r\   r]   )r^   r   )rb   r]   z\frac{a}{b}z\dfrac{a}{b}z\tfrac{a}{b}z\frac12z\frac12y	\frac1234"   z	\frac2{3}z\frac{a + b}{c}z\frac{7}{3}   )rc      zx = yzx \neq yzx < yzx > yzx \leq yzx \geq yzx \le yzx \ge yza^2 + b^2 = c^2zx^2zx^\frac{1}{2}z	x^{3 + 1}z
\pi^{|xy|}pi	5^0 - 4^0      )rh   r   z	\int x dxz\int x \, dxz\int x d\thetaz\int (x^2 - y)dxz\int x + a dxz\int daz\int_0^7 dxz\int\limits_{0}^{1} x dxz\int_a^b x dxz\int^b_a x dxz\int_{a}^b x dxz\int^{b}_a x dxz\int_{a}^{b} x dxz\int^{b}_{a} x dxz\int_{f(a)}^{f(b)} f(z) dzz\int a + b + c dxz\int \frac{dz}{z}z\int \frac{3 dz}{z}z\int \frac{1}{x} dxz!\int \frac{1}{a} + \frac{1}{b} dxz\int \frac{1}{x} + 1 dxz\frac{d}{dx} xz\frac{d}{dt} xz\frac{d}{dx} ( \tan x )z\frac{d f(x)}{dx}z\frac{d\theta(x)}{dx}r=   z\sin \thetaz\sin(\theta)z\sin^{-1} az\sin a \cos bz\sin \cos \thetaz\sin(\cos \theta)z(\csc x)(\sec y)z\frac{\sin{x}}2z\lim_{x \to 3} az+-)dirz\lim_{x \rightarrow 3} az\lim_{x \Rightarrow 3} az\lim_{x \longrightarrow 3} az\lim_{x \Longrightarrow 3} az\lim_{x \to 3^{+}} a+z\lim_{x \to 3^{-}} a-z\lim_{x \to 3^+} az\lim_{x \to 3^-} az\lim_{x \to \infty} \frac{1}{x}z\sqrt{x}z\sqrt{x + b}z\sqrt[3]{\sin x}z\sqrt[y]{\sin x}z\sqrt[\theta]{\sin x}z\sqrt{\frac{12}{6}}      zx!z100!d   z\theta!z(x + 1)!z(x!)!zx!!!z5!7!z\sum_{k = 1}^{3} cz\sum_{k = 1}^3 cz\sum^{3}_{k = 1} cz\sum^3_{k = 1} cz\sum_{k = 1}^{10} k^2
   z"\sum_{n = 0}^{\infty} \frac{1}{n!}z\prod_{a = b}^{c} xz\prod_{a = b}^c xz\prod^{c}_{a = b} xz\prod^c_{a = b} xzf(x)zf(x, y)z
f(x, y, z)zf'_1(x)zf_{1}'zf_{1}''(x+y)zf_{1}''zh_{\theta}(x_0, x_1)z|x|z||x||z|x||y|z||x||y||z\lfloor x \rfloorz\lceil x \rceilz\exp xz\exp(x)z\lg xz\ln xz\ln xyz\log xz\log xyz
\log_{2} xz
\log_{a} xz\log_{11} x   z\log_{a^2} xz\log_2 xz\log_a xz\overline{z}z\overline{\overline{z}}z\overline{x + y}z\overline{x} + \overline{y}z
\min(a, b)z\min(a, b, c - d, xy)z
\max(a, b)z\max(a, b, c - d, xy)z\langle x |z| x \ranglez\langle x | y \rangler3   za \, bza \thinspace bza \: bza \medspace bza \; bza \thickspace bz	a \quad bz
a \qquad bza \! bza \negthinspace bza \negmedspace bza \negthickspace bz\binom{n}{k}z\tbinom{n}{k}z\dbinom{n}{k}z\binom{n}{0}zx^\binom{n}{k}z\left(x + y\right) zz\left( x + y\right ) zz\left(  x + y\right ) zc               	   C   sh   ddh} t tD ])\}\}}|| v rqtd t||ks"J |W d    n1 s,w   Y  qd S )Nro   re   F)	enumerateSYMBOL_EXPRESSION_PAIRSr   r   expected_failuresi	latex_str
sympy_exprrM   rM   rN   test_symbol_expressions  s   
rz   c               	   C      dh} t tD ])\}\}}|| v rqtd t||ks!J |W d    n1 s+w   Y  qt tD ]\}\}}|| v r@q5t||ksJJ |q5d S )N   F)rs   #UNEVALUATED_SIMPLE_EXPRESSION_PAIRSr   r   !EVALUATED_SIMPLE_EXPRESSION_PAIRSru   rM   rM   rN   test_simple_expressions     
r   c               	   C   p   t D ]"\} }td t| |ksJ | W d    n1 sw   Y  qtD ]\} }t| |ks5J | q'd S NF)%UNEVALUATED_FRACTION_EXPRESSION_PAIRSr   r   #EVALUATED_FRACTION_EXPRESSION_PAIRSrx   ry   rM   rM   rN   test_fraction_expressions     
r   c               	   C   N   t D ]"\} }td t| |ksJ | W d    n1 sw   Y  qd S r   )RELATION_EXPRESSION_PAIRSr   r   r   rM   rM   rN   test_relation_expressions     
r   c               	   C   r{   Nr`   F)rs   "UNEVALUATED_POWER_EXPRESSION_PAIRSr   r    EVALUATED_POWER_EXPRESSION_PAIRSru   rM   rM   rN   test_power_expressions  r   r   c               	   C   s   dh} t tD ])\}\}}|| v rqtd t||ks!J |W d    n1 s+w   Y  qt tD ]\}\}}|| v r@q5t||ksJJ |q5d S )N   F)rs   %UNEVALUATED_INTEGRAL_EXPRESSION_PAIRSr   r   #EVALUATED_INTEGRAL_EXPRESSION_PAIRSru   rM   rM   rN   test_integral_expressions  r   r   c               	   C   s   ddh} t tD ])\}\}}|| v rqtd t||ks"J |W d    n1 s,w   Y  qt tD ]\}\}}|| v rAq6t||ksKJ |q6d S )Nr`   rj   F)rs   DERIVATIVE_EXPRESSION_PAIRSr   r   ru   rM   rM   rN   test_derivative_expressions  s   
r   c               	   C   sf   dh} t tD ])\}\}}|| v rqtd t||ks!J |W d    n1 s+w   Y  qd S r   )rs   TRIGONOMETRIC_EXPRESSION_PAIRSr   r   ru   rM   rM   rN   test_trigonometric_expressions  s   
r   c               	   C   r   r   )"UNEVALUATED_LIMIT_EXPRESSION_PAIRSr   r   r   rM   rM   rN   test_limit_expressions  r   r   c               	   C   r   r   )!UNEVALUATED_SQRT_EXPRESSION_PAIRSr   r   EVALUATED_SQRT_EXPRESSION_PAIRSr   rM   rM   rN   test_square_root_expressions  r   r   c               	   C   r   r   )&UNEVALUATED_FACTORIAL_EXPRESSION_PAIRSr   r   $EVALUATED_FACTORIAL_EXPRESSION_PAIRSr   rM   rM   rN   test_factorial_expressions  r   r   c               	   C   r   r   ) UNEVALUATED_SUM_EXPRESSION_PAIRSr   r   EVALUATED_SUM_EXPRESSION_PAIRSr   rM   rM   rN   test_sum_expressions  r   r   c               	   C   r   r   )$UNEVALUATED_PRODUCT_EXPRESSION_PAIRSr   r   r   rM   rM   rN   test_product_expressions'  r   r   c               	   C   sh   h d} t tD ])\}\}}|| v rqtd t||ks"J |W d    n1 s,w   Y  qd S )N>   r   r`   rj   F)rs   !APPLIED_FUNCTION_EXPRESSION_PAIRSr   r   ru   rM   rM   rN   !test_applied_function_expressions,  s   
r   c               	   C   r   r   ),UNEVALUATED_COMMON_FUNCTION_EXPRESSION_PAIRSr   r   *EVALUATED_COMMON_FUNCTION_EXPRESSION_PAIRSr   rM   rM   rN    test_common_function_expressions7  r   r   c               	   C   r   r   ) SPACING_RELATED_EXPRESSION_PAIRSr   r   r   rM   rM   rN   test_spacing@  s   
r   c               	   C   r   r   )%UNEVALUATED_BINOMIAL_EXPRESSION_PAIRSr   r   #EVALUATED_BINOMIAL_EXPRESSION_PAIRSr   rM   rM   rN   test_binomial_expressionsG  r   r   c               	   C   r   r   )MISCELLANEOUS_EXPRESSION_PAIRSr   r   r   rM   rM   rN   test_miscellaneous_expressionsP  r   r   )sympy.testing.pytestr   sympy.parsing.latex.larkr   sympy.externalr   sympy.concrete.productsr   sympy.concrete.summationsr   sympy.core.functionr   r   sympy.core.numbersr	   r
   r   sympy.core.powerr   sympy.core.parametersr   sympy.core.relationalr   r   r   r   r   sympy.core.symbolr   (sympy.functions.combinatorial.factorialsr   r   $sympy.functions.elementary.complexesr   r   &sympy.functions.elementary.exponentialr   r   #sympy.functions.elementary.integersr   r   (sympy.functions.elementary.miscellaneousr   r   r   r    (sympy.functions.elementary.trigonometricr!   r"   r#   r$   r%   r&   sympy.integrals.integralsr'   sympy.series.limitsr(   r)   r*   r+   r,   r-   r.   sympy.physics.quantumr/   r0   r1   	sympy.abcr2   r3   r4   r5   r6   r7   r8   r9   r:   r;   
test_latexr=   r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   rH   disabledrO   rQ   rR   rt   r}   r~   r   r   r   r   r   r   r   r   r   r    EVALUATED_LIMIT_EXPRESSION_PAIRSr   r   r   r   r   r   r   r   r   r   r   r   r   r   rz   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   rM   rM   rM   rN   <module>   s     04
	















 













	

	,$
	











$












#








"								
		