o
    jg[%                     @   s   d Z ddlmZmZmZmZmZmZmZ ddl	m
Z
 ddlmZmZmZ ddlmZmZmZmZmZmZmZ ddgZeeeefeeeefeeeefee
eeeeefeeeeiZdd	 e D Zd
d Zdd Zdd Zdd Zdd Z dd Z!dS )a   A module for mapping operators to their corresponding eigenstates
and vice versa

It contains a global dictionary with eigenstate-operator pairings.
If a new state-operator pair is created, this dictionary should be
updated as well.

It also contains functions operators_to_state and state_to_operators
for mapping between the two. These can handle both classes and
instances of operators and states. See the individual function
descriptions for details.

TODO List:
- Update the dictionary with a complete list of state-operator pairs
    )XOpYOpZOpXKetPxOpPxKetPositionKet3D)Operator)	StateBaseBraBaseKet)JxOpJyOpJzOpJ2OpJxKetJyKetJzKetoperators_to_statestate_to_operatorsc                 C   s   i | ]\}}||qS  r   ).0kvr   r   Y/var/www/html/zoom/venv/lib/python3.10/site-packages/sympy/physics/quantum/operatorset.py
<dictcomp>,   s    r   c           	      K   s^  t | ttfst| tstdt | trv| D ]}t |ts't|ts'tdqt| }|tv rVzdd |D }tt| t|fi |}W |S  tyU   t| }Y |S w dd |D }t|}|tv rrtt| |fi |}|S d}|S | tv rz|  }tt|  |fi |}W |S  ty   t|  }Y |S w t| tv rttt|  | fi |S dS )a.   Returns the eigenstate of the given operator or set of operators

    A global function for mapping operator classes to their associated
    states. It takes either an Operator or a set of operators and
    returns the state associated with these.

    This function can handle both instances of a given operator or
    just the class itself (i.e. both XOp() and XOp)

    There are multiple use cases to consider:

    1) A class or set of classes is passed: First, we try to
    instantiate default instances for these operators. If this fails,
    then the class is simply returned. If we succeed in instantiating
    default instances, then we try to call state._operators_to_state
    on the operator instances. If this fails, the class is returned.
    Otherwise, the instance returned by _operators_to_state is returned.

    2) An instance or set of instances is passed: In this case,
    state._operators_to_state is called on the instances passed. If
    this fails, a state class is returned. If the method returns an
    instance, that instance is returned.

    In both cases, if the operator class or set does not exist in the
    state_mapping dictionary, None is returned.

    Parameters
    ==========

    arg: Operator or set
         The class or instance of the operator or set of operators
         to be mapped to a state

    Examples
    ========

    >>> from sympy.physics.quantum.cartesian import XOp, PxOp
    >>> from sympy.physics.quantum.operatorset import operators_to_state
    >>> from sympy.physics.quantum.operator import Operator
    >>> operators_to_state(XOp)
    |x>
    >>> operators_to_state(XOp())
    |x>
    >>> operators_to_state(PxOp)
    |px>
    >>> operators_to_state(PxOp())
    |px>
    >>> operators_to_state(Operator)
    |psi>
    >>> operators_to_state(Operator())
    |psi>
    z%Argument is not an Operator or a set!zSet is not all Operators!c                 S   s   g | ]}| qS r   r   )r   opr   r   r   
<listcomp>t   s    z&operators_to_state.<locals>.<listcomp>c                 S   s   g | ]}t |qS r   )type)r   or   r   r   r   {   s    N)	
isinstancer	   set
issubclassNotImplementedError	frozenset
op_mapping
_get_stater   )		operatorsoptionssopsop_instancesrettmpclassesop_instancer   r   r   r   /   sL   6



c              	   K   sP  t | tst| tstd| tv r;t| }zt|tt|  fi |}W t|S  ttfy:   t|  }Y t|S w t	| tv rTt| ttt	|  fi |}t|S t | t
rn|  tv rnt| tt|   }t|S t| t
r|  tv rt| }zt|tt|   }W t|S  ttfy   t|   }Y t|S w d}t|S )a`   Returns the operator or set of operators corresponding to the
    given eigenstate

    A global function for mapping state classes to their associated
    operators or sets of operators. It takes either a state class
    or instance.

    This function can handle both instances of a given state or just
    the class itself (i.e. both XKet() and XKet)

    There are multiple use cases to consider:

    1) A state class is passed: In this case, we first try
    instantiating a default instance of the class. If this succeeds,
    then we try to call state._state_to_operators on that instance.
    If the creation of the default instance or if the calling of
    _state_to_operators fails, then either an operator class or set of
    operator classes is returned. Otherwise, the appropriate
    operator instances are returned.

    2) A state instance is returned: Here, state._state_to_operators
    is called for the instance. If this fails, then a class or set of
    operator classes is returned. Otherwise, the instances are returned.

    In either case, if the state's class does not exist in
    state_mapping, None is returned.

    Parameters
    ==========

    arg: StateBase class or instance (or subclasses)
         The class or instance of the state to be mapped to an
         operator or set of operators

    Examples
    ========

    >>> from sympy.physics.quantum.cartesian import XKet, PxKet, XBra, PxBra
    >>> from sympy.physics.quantum.operatorset import state_to_operators
    >>> from sympy.physics.quantum.state import Ket, Bra
    >>> state_to_operators(XKet)
    X
    >>> state_to_operators(XKet())
    X
    >>> state_to_operators(PxKet)
    Px
    >>> state_to_operators(PxKet())
    Px
    >>> state_to_operators(PxBra)
    Px
    >>> state_to_operators(XBra)
    X
    >>> state_to_operators(Ket)
    O
    >>> state_to_operators(Bra)
    O
    zArgument is not a state!N)r    r
   r"   r#   state_mapping_make_default_get_ops	_make_set	TypeErrorr   r   
dual_class)stater(   
state_instr,   r   r   r   r      sP   ;

c                 C   s&   z|  }W |S  t y   | }Y |S w N)r4   )exprr,   r   r   r   r1      s   r1   c                 K   s6   z| j |fi |}W |S  ty   t| }Y |S w r8   )_operators_to_stater#   r1   )state_classr*   r(   r,   r   r   r   r&      s   
r&   c                 K   sx   z| j |fi |}W n ty*   t|tttfr$tdd |D }nt|}Y nw t|tr:t|dkr:|d S |S )Nc                 s   s    | ]}t |V  qd S r8   )r1   )r   xr   r   r   	<genexpr>	  s    z_get_ops.<locals>.<genexpr>   r   )_state_to_operatorsr#   r    r!   tupler$   r1   len)r7   
op_classesr(   r,   r   r   r   r2     s   r2   c                 C   s   t | tttfrt| S | S r8   )r    r@   listr$   r!   )r*   r   r   r   r3     s   r3   N)"__doc__sympy.physics.quantum.cartesianr   r   r   r   r   r   r   sympy.physics.quantum.operatorr	   sympy.physics.quantum.stater
   r   r   sympy.physics.quantum.spinr   r   r   r   r   r   r   __all__r$   r0   itemsr%   r   r   r1   r&   r2   r3   r   r   r   r   <module>   s.    $$dX