o
    jg  ã                   @   s>   d Z ddlmZ ddlmZ ddlmZ dd„ Zddd	„Zd
S )aB  
Convergence acceleration / extrapolation methods for series and
sequences.

References:
Carl M. Bender & Steven A. Orszag, "Advanced Mathematical Methods for
Scientists and Engineers: Asymptotic Methods and Perturbation Theory",
Springer 1999. (Shanks transformation: pp. 368-375, Richardson
extrapolation: pp. 375-377.)
é    )ÚInteger)ÚS)Ú	factorialc                 C   sh   t j}td|d ƒD ]'}||  |t|| ƒ¡ ¡ || |  t j||   t|ƒt|| ƒ  7 }q
|S )aÃ  
    Calculate an approximation for lim k->oo A(k) using Richardson
    extrapolation with the terms A(n), A(n+1), ..., A(n+N+1).
    Choosing N ~= 2*n often gives good results.

    Examples
    ========

    A simple example is to calculate exp(1) using the limit definition.
    This limit converges slowly; n = 100 only produces two accurate
    digits:

        >>> from sympy.abc import n
        >>> e = (1 + 1/n)**n
        >>> print(round(e.subs(n, 100).evalf(), 10))
        2.7048138294

    Richardson extrapolation with 11 appropriately chosen terms gives
    a value that is accurate to the indicated precision:

        >>> from sympy import E
        >>> from sympy.series.acceleration import richardson
        >>> print(round(richardson(e, n, 10, 20).evalf(), 10))
        2.7182818285
        >>> print(round(E.evalf(), 10))
        2.7182818285

    Another useful application is to speed up convergence of series.
    Computing 100 terms of the zeta(2) series 1/k**2 yields only
    two accurate digits:

        >>> from sympy.abc import k, n
        >>> from sympy import Sum
        >>> A = Sum(k**-2, (k, 1, n))
        >>> print(round(A.subs(n, 100).evalf(), 10))
        1.6349839002

    Richardson extrapolation performs much better:

        >>> from sympy import pi
        >>> print(round(richardson(A, n, 10, 20).evalf(), 10))
        1.6449340668
        >>> print(round(((pi**2)/6).evalf(), 10))     # Exact value
        1.6449340668

    r   é   )r   ÚZeroÚrangeÚsubsr   ÚdoitÚNegativeOner   )ÚAÚkÚnÚNÚsÚj© r   úQ/var/www/html/zoom/venv/lib/python3.10/site-packages/sympy/series/acceleration.pyÚ
richardson   s   /$ÿÿr   r   c                    s´   ‡ ‡fdd„t || d ƒD ƒ}|dd… }t d|d ƒD ]8}t ||| d ƒD ]&}||d  || ||d  }}	}
|
| |	d  |
| d|	   ||< q(|dd… }q|| S )a7  
    Calculate an approximation for lim k->oo A(k) using the n-term Shanks
    transformation S(A)(n). With m > 1, calculate the m-fold recursive
    Shanks transformation S(S(...S(A)...))(n).

    The Shanks transformation is useful for summing Taylor series that
    converge slowly near a pole or singularity, e.g. for log(2):

        >>> from sympy.abc import k, n
        >>> from sympy import Sum, Integer
        >>> from sympy.series.acceleration import shanks
        >>> A = Sum(Integer(-1)**(k+1) / k, (k, 1, n))
        >>> print(round(A.subs(n, 100).doit().evalf(), 10))
        0.6881721793
        >>> print(round(shanks(A, n, 25).evalf(), 10))
        0.6931396564
        >>> print(round(shanks(A, n, 25, 5).evalf(), 10))
        0.6931471806

    The correct value is 0.6931471805599453094172321215.
    c                    s    g | ]}ˆ   ˆt|ƒ¡ ¡ ‘qS r   )r   r   r	   )Ú.0r   ©r   r   r   r   Ú
<listcomp>]   s     zshanks.<locals>.<listcomp>é   Nr   )r   )r   r   r   ÚmÚtableÚtable2Úir   ÚxÚyÚzr   r   r   ÚshanksG   s    $&r   N)r   )	Ú__doc__Úsympy.core.numbersr   Úsympy.core.singletonr   Ú(sympy.functions.combinatorial.factorialsr   r   r   r   r   r   r   Ú<module>   s    6